II-VI Infrared Logo  
  | Chinese | Dutch | Japanese | Language Support

Toll Free USA and Canada 888.558.1504

Quality Mission Statement | Export Compliance Statement | II-VI Terms & Warranty


RFQ & Order
  Resources / Spot Size

Spot Size

      RGQ and Order

Tutorials

Sales Literature

Spot Size Spiricon (1): The image above, captured using a Spiricon® Pyrocam™ III camera, is a CO2 laser beam focused with a “Cross Hair” lens. The lens surface is divided into four quadrants. Each quadrant has a slightly tilted cylindrical parabolic shape. This surface shape res Spot Size Spiricon (2): The image above, captured using a Spiricon® Pyrocam™ III camera, is a CO2 grating tuned laser beam near the laser output. Note the beam intensity is approximately Gaussian in distribution.
Spot Size Spiricon (1): The image above, captured using a Spiricon® Pyrocam™ III camera, is a CO2 laser beam focused with a “Cross Hair” lens. The lens surface is divided into four quadrants. Each quadrant has a slightly tilted cylindrical parabolic shape. This surface shape resSpot Size Spiricon (2): The image above, captured using a Spiricon® Pyrocam™ III camera, is a CO2 grating tuned laser beam near the laser output. Note the beam intensity is approximately Gaussian in distribution.

Cutting applications require focusing a laser beam to a minimum spot size. This is necessary to maximize the energy density and produce precision cuts. Many factors affect spot size. The most important are:

  • Laser mode (M2)
  • Diffraction
  • Spherical aberration

Lens shape and focal length determine the latter two factors. Of course, laser mode is determined by the laser and beam delivery system. II-VI offers plano-convex, meniscus, and aspheric lenses in a wide variety of standard focal lengths and diameters. The following images show how these three factors affect spot size, and how to calculate spot size for plano-convex, meniscus, and aspheric lenses. The notes outline a simple procedure for picking the right lens for a given application.

Diffraction Diffraction, a natural and inescapable result of the wave nature of light, is present in all optical systems, and determines the ultimate theoretical limit on their performance. Diffraction causes light beams to spread transversely as they propagate. If a “perfect” lens is used to focus a collimated laser beam, the spot size is limited only by diffraction. Spot size formula:

Spot Size Formula
Spot Size Formula

This equation is used to determine the spot size produced by an aspheric lens. Diffraction’s most important factor is that the spot size increases linearly with focal length but is inversely proportional to beam diameter. Thus, as the input laser beam diameter increases for a given lens, spot size decreases due to lower diffraction. Also, as focal length decreases for a given laser beam diameter, spot size again decreases.

M2 - Laser Mode Parameter

As seen in the previous formula for diffraction, focal spot size is directly proportional to the laser mode parameter, M2. M2 expresses how quickly a given beam diverges while propagating; a perfect TEM00 laser beam has M2=1. This parameter is measured by advanced instruments, or is obtained from laser manufacturers’ specifications.

 

   
 
           
Link to II-VI corporate website
 
Legal | Site Map | Webmaster
 
© 2014 II-VI Infrared All rights reserved