The DOC is a hybrid AR coating that provides higher optical performance than traditional Ge DLC coatings with improved durability over standard AR designs.

This coating is especially useful for optics exposed to harsh environments. Applications that require frequent cleaning include: cutting, drilling, scribing and marking, where spatter and debris may adhere to the optical surface.

The DOC/AR coating is typically applied to one side of the optic, but can be applied to both. This low absorbing coating is also ideal for applications that are sensitive to thermal stability.

The DOC is a hybrid AR coating that provides higher optical performance than traditional Ge DLC coatings with improved durability over standard AR designs.

This coating is especially useful for optics exposed to harsh environments. Applications that require frequent cleaning include: cutting, drilling, scribing and marking, where spatter and debris may adhere to the optical surface.

The DOC/AR coating is typically applied to one side of the optic, but can be applied to both. This low absorbing coating is also ideal for applications that are sensitive to thermal stability.

The DOC is a hybrid AR coating that provides higher optical performance than traditional Ge DLC coatings with improved durability over standard AR designs.

This coating is especially useful for optics exposed to harsh environments. Applications that require frequent cleaning include: cutting, drilling, scribing and marking, where spatter and debris may adhere to the optical surface.

The DOC/AR coating is typically applied to one side of the optic, but can be applied to both. This low absorbing coating is also ideal for applications that are sensitive to thermal stability.

The DOC is a hybrid AR coating that provides higher optical performance than traditional Ge DLC coatings with improved durability over standard AR designs.

This coating is especially useful for optics exposed to harsh environments. Applications that require frequent cleaning include: cutting, drilling, scribing and marking, where spatter and debris may adhere to the optical surface.

The DOC/AR coating is typically applied to one side of the optic, but can be applied to both. This low absorbing coating is also ideal for applications that are sensitive to thermal stability.

The DOC is a hybrid AR coating that provides higher optical performance than traditional Ge DLC coatings with improved durability over standard AR designs.

This coating is especially useful for optics exposed to harsh environments. Applications that require frequent cleaning include: cutting, drilling, scribing and marking, where spatter and debris may adhere to the optical surface.

The DOC/AR coating is typically applied to one side of the optic, but can be applied to both. This low absorbing coating is also ideal for applications that are sensitive to thermal stability.

The DOC is a hybrid AR coating that provides higher optical performance than traditional Ge DLC coatings with improved durability over standard AR designs.

This coating is especially useful for optics exposed to harsh environments. Applications that require frequent cleaning include: cutting, drilling, scribing and marking, where spatter and debris may adhere to the optical surface.

The DOC/AR coating is typically applied to one side of the optic, but can be applied to both. This low absorbing coating is also ideal for applications that are sensitive to thermal stability.
Properties

Material – ZnSe

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensional Tolerance</td>
<td>Diameter: +0.000/-0.005”</td>
</tr>
<tr>
<td>Edge Thickness Variation (ETV)</td>
<td>< 3 arc minutes</td>
</tr>
<tr>
<td>Clear Aperture</td>
<td>90% of diameter</td>
</tr>
<tr>
<td>Surface Figure (power/irregularity) at 0.63um</td>
<td>1.0 fringe/0.5 fringe</td>
</tr>
<tr>
<td>Scratch-Dig</td>
<td>20-10</td>
</tr>
<tr>
<td>AR Coating Reflectivity per Surface at 10.6 um</td>
<td><0.2%</td>
</tr>
<tr>
<td>Diameter</td>
<td>10mm – 300mm</td>
</tr>
</tbody>
</table>

Coating DOC/AR

<table>
<thead>
<tr>
<th>Substrate</th>
<th>ZnSe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral region; Available</td>
<td>9.2-10.7 μm</td>
</tr>
<tr>
<td>Product Specification at 10.6 um</td>
<td>Transmission > 98%</td>
</tr>
<tr>
<td>Spectral Performance at 9.3xμm (DOC/AR)</td>
<td>Tav > 98.5% (through both surfaces) Rav < 0.2% (per surface)</td>
</tr>
</tbody>
</table>

Environmental Performance

This coating is designed to meet durability requirements of the following MIL Specification:
- MIL-C-48497
- 3.4.1.1 Adhesion
- 3.4.1.2 Humidity
- 3.4.1.3 Moderate Abrasion
- 3.4.2.1 Temperature
- 3.4.2.2 Solubility and Cleanability

Spectral Performance

Spectral performance at 9.3xμm(DOC/AR)
- Reflection <0.2% per surface
- Transmission >98.5%
- Absorption <0.9%

This coating can be designed for similar performance at other CO2 wavelengths.

World Sales Offices

For more information, Please contact a II-VI sales representative for your region, or visit www.iiviinfrared.com for our most complete and up-to-date contact information.